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A search for new heavy quarks focusing on recent vector-like quark searches with the ATLAS
detector at the CERN Large Hadron Collider is presented. Two recent searches targeting
the pair production of type vector-like quarks are described. The first search is sensitive to
vector-like up-type quark (T ) decays to a t quark and either a Standard Model Higgs boson
or a Z boson. The second search is primarily sensitive to T decays to W boson and a b quark.
Additionally, the results can be interpreted for alternative VLQ decays.

1 Introduction

Although appealing, a straightforward addition of a fourth generation of Standard Model (SM)
quarks is excluded by experimental observation; such an addition would contribute to the SM
Higgs boson production via fermion loops and would not be compatible with the observed 1,2

Higgs boson production cross-section. For this reason and others, latest searches for new heavy
quarks in ATLAS 3 have targeted Vector-Like Quarks (VLQs). VLQs are proposed in various
models 12,13,14,15 of new physics beyond the SM. They are coloured spin-1/2 fermions of which
the left- and right-handed components transform the same way under gauge transformations 4,5.
VLQs evade limitations imposed on chiral quark extensions of the SM, however they can mix
with their SM quark counterparts and regulate the Higgs boson mass-squared divergence. They
therefore provide an attractive mechanism to solve the hierarchy problem.

VLQs can have charges analogous to their SM quark counterparts, such as the T and B
VLQs with charge q = 2/3e and −1/3e, respectively, or more exotic charges, such as in the case
of the X and Y VLQs, with charge q = 5/3e and −4/3e, respectively, where e is the charge of
the electron. The various VLQs can be arranged in SU(2) singlets or multiplets. The VLQs can
decay to the W , Z, and Higgs (H) bosons with branching ratios which depend on the model
and, in general, decays to third generation SM quarks are favoured. As a consequence, it is
usually assumed in searches that the VLQs couple exclusively to the t and b quarks.
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Figure 1 – Example Feynman diagrams for single VLQ production (left) and pair-production (right)

The new quarks could be produced either singly or in pairs. The single production mechanism
dominates for high VLQ masses 6. For single production, the production cross-sections depend
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strongly on the model, since the mechanism requires the mediation of a gauge boson, as shown on
the left of Figure 1. Conversely, the pair-production mechanism, proceeding via gluon-splitting
as shown on the right of Figure 1, is generally considered model-independent and dominates up
to VLQ masses of the order of 800 GeV. As a consequence, the recent ATLAS searches presented
in these proceedings have focused on VLQ pair-production. Two searches are discussed in the
following sections: a search for the pair production of up-type VLQs in events with multiple
b-jets 7 and a search for the pair production of VLQs decaying to a high-pT W -boson and a
b-quark in events with leptons and jets8. Both analyses are using the 36.1 fb−1 of proton-proton
collisions delivered by the LHC at

√
s = 13 TeV in 2015 and 2016 and recorded by the ATLAS

detector.

2 Search for pair production of up-type vector-like quarks and for four-top-quark
events in final states with multiple b-jets with the ATLAS detector (T T̄ → Ht+X)

The search targets T T̄ pair production where at least one of the VL T decays to a H boson or
a Z boson with the boson decaying to either to a pair of b quarks (T → H(→ bb̄)t) or a pair
of neutrinos (T → Z(→ νν̄)t), respectively. Additionally, the search investigates anomalous
four-top-quark production in the context of an effective field theory model and in a universal
extra dimensions model, however this analysis is not discussed in these proceedings.

The analysis takes advantage of the presence of multiple jets, b-tagged jets, t-tagged jets,
H-tagged jets, and Emiss

T . Jets are reconstructed using the anti-kt algorithm 10 with a radius
parameter R = 0.4. Jets containing b hadrons are tagged using a working point with 77%
efficiency measured in simulated tt̄ events. Large-radius jets are obtained by reclustering 11 the
R = 0.4 jets using the anti-kt algorithm with a radius parameter R = 1.0. By “t-tagged” and “H-
tagged” jets we refer to large-radius jets identified with decaying t quark or H boson candidates
by making requirements on their transverse momentum, mass, and number of constituents.

The analysis is split into two channels, with initial preselection criteria as shown in Table 1,
taking advantage of the event characteristics of the two targeted signatures. The “1-lepton (1L)
channel” requires exactly one isolated electron or muon and has a modest requirement on Emiss

T ,
while the “0-lepton (0L) channel” requires the absence of any isolated electrons or muons and
Emiss

T > 200 GeV.

Table 1: Summary of preselection requirements for the 1-lepton and 0-lepton channels in the Ht+X analysis 7.
Here mW

T is the transverse mass of the lepton and the Emiss
T , and ∆φ4j

min is the minimum azimuthal separation

between the ~Emiss
T vector and each of the four highest-pT jets.

Preselection requirement
Requirement 1-lepton channel 0-lepton channel
Trigger Single-lepton trigger Emiss

T trigger
Leptons = 1 isolated e or µ = 0 isolated e or µ
Jets ≥ 5 jets ≥ 6 jets
b-tagging ≥ 2 b-tagged jets ≥ 2 b-tagged jets
Emiss

T Emiss
T > 20 GeV Emiss

T > 200 GeV

Other Emiss
T -related Emiss

T +mW
T ∆φ4jmin > 0.4

The two channels are further divided into search regions according to the number of b-, t-, and
H-tagged jets in the event as well as the overall jet multiplicity. In addition, for the 0L channel,
the regions are categorized in “high-mass” (HM) and “low-mass” (LM) regions depending on
whether the selected events satisfy (HM) or fail (LM) the requirement mb

T,min > 160 GeV, where

mb
T,min is the minimum transverse mass formed with the Emiss

T and any of the 2 (or 3) b-jets. In
total, 12 (22) search regions are defined for the 1L (0L) channel.

The final discriminant is the effective mass (meff), defined as the scalar sum of the pT of
the lepton, jets, and Emiss

T present in the events. As can be seen in Figure 2, the background is
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Figure 2 – Left: Distribution of the final discriminant for data, expected background, and a signal model with
mT = 1 TeV in an example search region before the background-only fit for the Ht + X analysis 7. Right:
Compatibility of the background expectation with the data in the search regions after the background-only fit in
the Ht+X analysis 7.

dominated by tt̄+jets events after preselection. Small contributions arise from single-top-quark,
W/Z+jets, multijet and WW , WZ, ZZ production, as well as from the associated production
of a vector boson V (V = W,Z) or a H boson and a tt̄ pair (tt̄V and tt̄H). All backgrounds are
estimated using samples of simulated events and initially normalized to their theoretical cross
sections, with the exception of the multijet background, which is estimated using data-driven
methods. A combined maximum likelihood fit of the meff distribution is performed to the data
in all search regions to determine the normalization of the backgrounds. As can be seen in
Figure 2, the background expectation has a very good agreement with the data in all search
regions, after the background-only fit. The background modelling is further checked in 10 (16)
additional validation regions made orthogonal by requiring exactly 5 (6) jets in for the 1L (0L)
channel. The main systematic uncertainties, which vary by search region, are the modelling of
the tt̄ background, flavor tagging uncertainties, and background normalization uncertainties.

Given the compatibility of the data and the background expectation, 95% CL limits are set on
the pair production of VL T separately for the two channels, as well as combined. The excluded
VL T masses depend on the branching ratios assumed by the model under investigation. For
example, as shown in Figure 3, VL T masses up to 1.3 TeV are excluded for the SU(2) doublet
model which assumes BR(T → Ht) ≈ BR(T → Zt) ≈ 0.5. For a model assuming a VL T
exclusively decaying to Ht (BR(T → Ht) = 1) masses up to 1.4 TeV are excluded.

However, a more general interpretation of the results can be performed by reweighting the
signal samples to other BR compositions to obtain two-dimensional limits on the BR plane, as
shown on the right of Figure 3. Under the assumption BR(T → Ht)+BR(T →Wb)+BR(T →
Zt) = 1, each point on the plane indicates a model with a given BR composition. The colour
scale indicates the highest excluded mass at the given BR composition. As can be seen, the
highest excluded masses are near point (0, 1) where BR(T → Ht) = 1 which is expected given
the optimization of the search for the T → Ht and Zt decays.

3 Search for pair production of heavy vector-like quarks decaying to high-pT
W bosons and b quarks in the lepton-plus-jets final state in pp collisions at√
s = 13 TeV with the ATLAS detector (QQ̄→Wb+X)

The second search primarily targets T T̄ production where at least one of the VL T decays
via T → Wb. Events are initially required to have exactly one lepton (either an electron or a
muon), to have at least three jets of which at least one is required to be b-tagged, and to have
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Figure 3 – Combined expected and observed limits as a function of VL T mass for an example BR scenario (left)
and combined observed mass limits in the two-dimensional BR plane (right) for the Ht+X analysis 7.

Emiss
T > 60 GeV. The events are further required to have at least one high-pT W candidate

which decays hadronically, labelled Whad. The selection is therefore optimized for the decay
T T̄ → WhadWlepbb, where Wlep denotes a W decaying leptonically. The four-momentum of the

neutrino is analytically determined using the missing transverse momentum vector ~Emiss
T and

constraints of the lepton-neutrino system from the mass of the W boson.

The final discriminant used in the analysis is the reconstructed mass of the semi-leptonically
decaying VL T (mlep

T ). The analysis attempts to reconstruct two T candidates in each event by
making all combinations of the hadronic and leptonic W candidates with the jets in the event
and selecting the combination that minimizes the quantity |mhad

T − mlep
T |, where mhad

T is the
reconstructed mass of the fully hadronically decaying VL T . Shown in the left of Figure 4 are
the unit-normalized mlep

T distributions for the dominant tt̄ background and for signal, generated
under various assumptions of VL T mass for a model assuming BR(T → Wb) = 1. As can be

seen, mlep
T provides an excellent separation power against background. The same procedure can

be applied to a search for VL B →Wt without need for further optimization. As shown on the
right of Figure 4 the mlep

T still has a very good separation power against the background when
used for signal with a model assuming BR(B →Wt) = 1.
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Figure 4 – The reconstructed leptonic VL T mass in the signal region of the Wb + X analysis 8 is shown for
the tt̄ background and a few signal mass points, for signal models assuming BR(T → Wb) = 1 (left) and for
signal models assuming BR(B → Wt) = 1 (right). In both figures, the distributions are normalized to unity for
comparison of the relative shapes at each mass point.

The tt̄ background is constrained by a dedicated control region (CR) and the search is per-
formed in an orthogonal signal region (SR), by performing a likelihood fit of the background and

signal contributions to the mlep
T distribution observed in data. The SR and CR are defined using

the scalar sum of the Emiss
T and the pT of the lepton and jets (ST) and the separation between

the lepton and the neutrino (∆R(lep, ν)). The definitions of the regions on the two-dimensional
∆R(lep, ν) – ST plane are shown in Figure 5 which shows the distribution expected for simulated
tt̄ background (left) and a signal model assuming BR(T →Wb) = 1 and mT = 1.2 TeV (right).
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As can be seen, the CR and SR definitions allow for high signal efficiency in the SR and a large
number of background events in the CR while being as close as possible to the SR. Sub-dominant
backgrounds in this analysis include multijet events, estimated with the matrix method tech-
nique 9, and other SM backgrounds (W+jets, single t, Z+jets, tt̄V ) which are estimated with
Monte Carlo.
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The dominant systematic uncertainties in this analysis are the single t and tt̄ modelling
uncertainties and the jet energy resolution. The mlep

T distribution in the SR is shown in Figure 6
for background and for data before (left) and after (right) a background only fit. The expected
signal distribution for a model with BR(T → Wb) = 1 and mT = 1 TeV is also shown in the
pre-fit plot. After the fit, a very good agreement of the background expectation with the data
is observed and therefore limits are set at 95% CL.
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Figure 6 – Leptonic VLQ candidate mass distributions (mlep
T ) in the signal region of the Wb + X analysis 8

before (left) and after a fit under the background-only hypothesis (right). The hatched area represents the total
uncertainty in the background.

As in the first analysis, limits are set for particular benchmark models with specific BR
assumptions as well as in the two-dimensional BR plane, using a similar signal reweighting pro-
cedure. Figure 7 (left) shows the highest excluded VL T mass for a given BR composition. The
excluded masses are higher near point (1, 0) indicating higher sensitivity to high BR(T →Wb).
Masses up to 1350 GeV are excluded assuming BR(T → Wb) = 1. For the SU(2) singlet sce-
nario with BR to Wb, Zt, and Ht approximately equal to 0.5, 0.25, and 0.25, respectively, VL
T masses up to 1170 GeV are excluded. The BR(T →Wb) = 1 limits can be further applied to
the VL Y quark with charge q = −4/3e which decays exclusively to Wb, since no assumption on
the VLQ charge is made. Pair production of VL Y quarks is therefore excluded up to 1350 GeV.

Furthermore, as discussed above, the same analysis can be used to determine limits on the
pair production of VL B quarks and limits on the two-dimensional BR(B →Wt)–BR(B → Hb)
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plane are shown in Figure 7 (right). Assuming BR(B → Wt) = 1, VL B masses are excluded
up to 1250 GeV, while masses up to 1080 GeV are excluded for a singlet scenario. The former
limits are also applicable to the VL X with charge q = 5/3e which decays exclusively to Wt and
is therefore excluded for masses up to 1250 GeV.
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Figure 7 – Observed 95% CL lower limits on the mass of the T quark in the branching-ratio plane of BR(T →Wb)
versus BR(T → Ht) (left) and observed 95% CL lower limits on the mass of the B quark in the branching-ratio
plane of BR(B →Wt) versus BR(B → Hb) (right) for the Wb+X analysis8. The markers indicate the branching
ratios for the SU(2) singlet and doublet scenarios with masses above ≈ 0.8 TeV, where they are approximately
independent of the VL T and B masses. The white region is due to the limit falling below 500 GeV, the lowest
simulated signal mass.

4 Summary and conclusions

The latest ATLAS searches for new heavy quarks have focused on VLQs with a broad program
targeting both pair and single production. Two recent searches for the pair production of
VLQs performed by ATLAS and targeting decay modes via the W , Z, and H bosons have been
presented. Assuming 100% BR to these decay modes, VL T masses up to between 1.17 TeV
and 1.43 TeV are excluded at 95% CL. Additionally, VL B masses are excluded up to 1.25 TeV
assuming 100% BR to Wt. Finally, exclusion limits are set for scenarios with intermediate BR
compositions and interpretations in the two-dimensional BR plane for the highest excluded VLQ
masses are provided.
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